3.653 \(\int \frac{1}{\sec ^{\frac{5}{2}}(c+d x) \sqrt{a+b \sec (c+d x)}} \, dx\)

Optimal. Leaf size=249 \[ -\frac{2 b \left (7 a^2+8 b^2\right ) \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \text{EllipticF}\left (\frac{1}{2} (c+d x),\frac{2 a}{a+b}\right )}{15 a^3 d \sqrt{a+b \sec (c+d x)}}+\frac{2 \left (9 a^2+8 b^2\right ) \sqrt{a+b \sec (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{15 a^3 d \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}}}-\frac{8 b \sin (c+d x) \sqrt{a+b \sec (c+d x)}}{15 a^2 d \sqrt{\sec (c+d x)}}+\frac{2 \sin (c+d x) \sqrt{a+b \sec (c+d x)}}{5 a d \sec ^{\frac{3}{2}}(c+d x)} \]

[Out]

(-2*b*(7*a^2 + 8*b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*
x]])/(15*a^3*d*Sqrt[a + b*Sec[c + d*x]]) + (2*(9*a^2 + 8*b^2)*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b
*Sec[c + d*x]])/(15*a^3*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]]) + (2*Sqrt[a + b*Sec[c + d*x]]
*Sin[c + d*x])/(5*a*d*Sec[c + d*x]^(3/2)) - (8*b*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(15*a^2*d*Sqrt[Sec[c +
 d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.5671, antiderivative size = 249, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 9, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.36, Rules used = {3863, 4104, 4035, 3856, 2655, 2653, 3858, 2663, 2661} \[ -\frac{2 b \left (7 a^2+8 b^2\right ) \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{15 a^3 d \sqrt{a+b \sec (c+d x)}}+\frac{2 \left (9 a^2+8 b^2\right ) \sqrt{a+b \sec (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{15 a^3 d \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}}}-\frac{8 b \sin (c+d x) \sqrt{a+b \sec (c+d x)}}{15 a^2 d \sqrt{\sec (c+d x)}}+\frac{2 \sin (c+d x) \sqrt{a+b \sec (c+d x)}}{5 a d \sec ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sec[c + d*x]^(5/2)*Sqrt[a + b*Sec[c + d*x]]),x]

[Out]

(-2*b*(7*a^2 + 8*b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*
x]])/(15*a^3*d*Sqrt[a + b*Sec[c + d*x]]) + (2*(9*a^2 + 8*b^2)*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b
*Sec[c + d*x]])/(15*a^3*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]]) + (2*Sqrt[a + b*Sec[c + d*x]]
*Sin[c + d*x])/(5*a*d*Sec[c + d*x]^(3/2)) - (8*b*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(15*a^2*d*Sqrt[Sec[c +
 d*x]])

Rule 3863

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(Cos[e
+ f*x]*(d*Csc[e + f*x])^(n + 1)*Sqrt[a + b*Csc[e + f*x]])/(a*d*f*n), x] + Dist[1/(2*a*d*n), Int[((d*Csc[e + f*
x])^(n + 1)*Simp[-(b*(2*n + 1)) + 2*a*(n + 1)*Csc[e + f*x] + b*(2*n + 3)*Csc[e + f*x]^2, x])/Sqrt[a + b*Csc[e
+ f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 4104

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m +
1)*(d*Csc[e + f*x])^n)/(a*f*n), x] + Dist[1/(a*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[
a*B*n - A*b*(m + n + 1) + a*(A + A*n + C*n)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ
[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rule 4035

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 3856

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3858

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(Sqrt[d*
Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rubi steps

\begin{align*} \int \frac{1}{\sec ^{\frac{5}{2}}(c+d x) \sqrt{a+b \sec (c+d x)}} \, dx &=\frac{2 \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{5 a d \sec ^{\frac{3}{2}}(c+d x)}-\frac{\int \frac{4 b-3 a \sec (c+d x)-2 b \sec ^2(c+d x)}{\sec ^{\frac{3}{2}}(c+d x) \sqrt{a+b \sec (c+d x)}} \, dx}{5 a}\\ &=\frac{2 \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{5 a d \sec ^{\frac{3}{2}}(c+d x)}-\frac{8 b \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{15 a^2 d \sqrt{\sec (c+d x)}}+\frac{2 \int \frac{\frac{1}{2} \left (9 a^2+8 b^2\right )+a b \sec (c+d x)}{\sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}} \, dx}{15 a^2}\\ &=\frac{2 \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{5 a d \sec ^{\frac{3}{2}}(c+d x)}-\frac{8 b \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{15 a^2 d \sqrt{\sec (c+d x)}}-\frac{\left (b \left (7 a^2+8 b^2\right )\right ) \int \frac{\sqrt{\sec (c+d x)}}{\sqrt{a+b \sec (c+d x)}} \, dx}{15 a^3}+\frac{\left (9 a^2+8 b^2\right ) \int \frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{\sec (c+d x)}} \, dx}{15 a^3}\\ &=\frac{2 \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{5 a d \sec ^{\frac{3}{2}}(c+d x)}-\frac{8 b \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{15 a^2 d \sqrt{\sec (c+d x)}}-\frac{\left (b \left (7 a^2+8 b^2\right ) \sqrt{b+a \cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{b+a \cos (c+d x)}} \, dx}{15 a^3 \sqrt{a+b \sec (c+d x)}}+\frac{\left (\left (9 a^2+8 b^2\right ) \sqrt{a+b \sec (c+d x)}\right ) \int \sqrt{b+a \cos (c+d x)} \, dx}{15 a^3 \sqrt{b+a \cos (c+d x)} \sqrt{\sec (c+d x)}}\\ &=\frac{2 \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{5 a d \sec ^{\frac{3}{2}}(c+d x)}-\frac{8 b \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{15 a^2 d \sqrt{\sec (c+d x)}}-\frac{\left (b \left (7 a^2+8 b^2\right ) \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}}} \, dx}{15 a^3 \sqrt{a+b \sec (c+d x)}}+\frac{\left (\left (9 a^2+8 b^2\right ) \sqrt{a+b \sec (c+d x)}\right ) \int \sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}} \, dx}{15 a^3 \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}}\\ &=-\frac{2 b \left (7 a^2+8 b^2\right ) \sqrt{\frac{b+a \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right ) \sqrt{\sec (c+d x)}}{15 a^3 d \sqrt{a+b \sec (c+d x)}}+\frac{2 \left (9 a^2+8 b^2\right ) E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right ) \sqrt{a+b \sec (c+d x)}}{15 a^3 d \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}}+\frac{2 \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{5 a d \sec ^{\frac{3}{2}}(c+d x)}-\frac{8 b \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{15 a^2 d \sqrt{\sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.712849, size = 193, normalized size = 0.78 \[ \frac{\sqrt{\sec (c+d x)} \left (-4 b \left (7 a^2+8 b^2\right ) \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \text{EllipticF}\left (\frac{1}{2} (c+d x),\frac{2 a}{a+b}\right )+2 a \sin (c+d x) \left (3 a^2 \cos (2 (c+d x))+3 a^2-2 a b \cos (c+d x)-8 b^2\right )+4 \left (9 a^2 b+9 a^3+8 a b^2+8 b^3\right ) \sqrt{\frac{a \cos (c+d x)+b}{a+b}} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )\right )}{30 a^3 d \sqrt{a+b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sec[c + d*x]^(5/2)*Sqrt[a + b*Sec[c + d*x]]),x]

[Out]

(Sqrt[Sec[c + d*x]]*(4*(9*a^3 + 9*a^2*b + 8*a*b^2 + 8*b^3)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticE[(c + d
*x)/2, (2*a)/(a + b)] - 4*b*(7*a^2 + 8*b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a
 + b)] + 2*a*(3*a^2 - 8*b^2 - 2*a*b*Cos[c + d*x] + 3*a^2*Cos[2*(c + d*x)])*Sin[c + d*x]))/(30*a^3*d*Sqrt[a + b
*Sec[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.303, size = 1736, normalized size = 7. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/sec(d*x+c)^(5/2)/(a+b*sec(d*x+c))^(1/2),x)

[Out]

-2/15/d/a^3/((a-b)/(a+b))^(1/2)*(3*cos(d*x+c)^4*((a-b)/(a+b))^(1/2)*a^3-8*EllipticE((-1+cos(d*x+c))*((a-b)/(a+
b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*b^3*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+
1))^(1/2)*sin(d*x+c)-cos(d*x+c)^3*((a-b)/(a+b))^(1/2)*a^2*b+4*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a*b^2+10*cos(d*
x+c)*((a-b)/(a+b))^(1/2)*a^2*b-8*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a*b^2-9*a^2*b*((a-b)/(a+b))^(1/2)+4*a*b^2*((a-
b)/(a+b))^(1/2)-9*cos(d*x+c)*sin(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/
2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3+9*cos(d*x+c)*sin(d*x+c)*
EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(
d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^3+6*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a^3-9*cos(d*x+c)*((a-b)/(a+b)
)^(1/2)*a^3+8*cos(d*x+c)*((a-b)/(a+b))^(1/2)*b^3-9*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-
(a+b)/(a-b))^(1/2))*a^3*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+9*
EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3*(1/(a+b)*(b+a*cos(d*x+c))/(
cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-8*b^3*((a-b)/(a+b))^(1/2)+2*cos(d*x+c)*sin(d*x+c)*(1/
(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^
(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b-8*cos(d*x+c)*sin(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))
^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))
*a*b^2-9*cos(d*x+c)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*
(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^2*b+8*cos(d*x+c)*sin(d*x+c)*Ellipti
cE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+
1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a*b^2-8*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a
-b))^(1/2))*a*b^2*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-9*Ellipt
icE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b*(1/(a+b)*(b+a*cos(d*x+c))/(cos(
d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+8*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c
),(-(a+b)/(a-b))^(1/2))*a*b^2*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x
+c)-8*cos(d*x+c)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/
(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*b^3+2*EllipticF((-1+cos(d*x+c))*((a-b)/(
a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x
+c)+1))^(1/2)*sin(d*x+c))*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*cos(d*x+c)^3*(1/cos(d*x+c))^(5/2)/sin(d*x+c)/(b+
a*cos(d*x+c))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(5/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(b*sec(d*x + c) + a)*sec(d*x + c)^(5/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b \sec \left (d x + c\right ) + a} \sqrt{\sec \left (d x + c\right )}}{b \sec \left (d x + c\right )^{4} + a \sec \left (d x + c\right )^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(5/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(d*x + c) + a)*sqrt(sec(d*x + c))/(b*sec(d*x + c)^4 + a*sec(d*x + c)^3), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)**(5/2)/(a+b*sec(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(5/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(b*sec(d*x + c) + a)*sec(d*x + c)^(5/2)), x)